Proposition. Soit Φ un automorphisme de S_n qui transforme les transpositions en transposition. Alors Φ est un automorphisme intérieur.

 $D\acute{e}monstration$. On écarte tout de suite le cas n=2 qui est trivial (il n'y a que l'identité qui est bien intérieur).

Soit Φ un tel automorphisme. S_n est engendré par les $\tau_i = (1\ i),\ i \neq 1$. Par hypothèse, $\Phi(t_i)$ est une transposition, et si $i \neq j,\ \tau_i$ et τ_j ne commutent pas, donc $\Phi(\tau_2)$ et $\Phi(\tau_3)$ ne commutent pas non plus. Leur support ne sont donc pas disjoints, l'intersection des supports doit posséder exactement un élément que l'on appelle α_1 . Si l'intersection est de cardinal 2, les support seraient égaux, et donc on aurait les mêmes transpositions, ce qui est absurde. Notons alors :

$$\Phi(\tau_2) = (\alpha_1 \ \alpha_2), \ \Phi(\tau_3) = (\alpha_1 \ \alpha_3)$$

Soit $3 < i \le n$, $\Phi(\tau_i)$ et $\Phi(\tau_2)$ ne commutent pas, de même, leur support sont joints en un élément, s'il s'agit de α_2 , alors forcément les supports de $\Phi(\tau_i)$ et $\Phi(\tau_3)$ sont joints en α_3 . On a donc $\Phi(\tau_i) = (\alpha_2 \ \alpha_3)$, or :

$$(\alpha_1 \ \alpha_2)(\alpha_1 \ \alpha_3)(\alpha_1 \ \alpha_2) = (\alpha_2 \ \alpha_3)$$

Soit, en appliquant Φ^{-1} à cette égalité :

$$(2\ 3) = (1\ 2)(1\ 3)(1\ 2) = (1\ i)$$

ce qui est absurde. Donc le support de $\Phi(\tau_i)$ contient α_1 et un autre élément α_i qui n'est dans aucun autre des supports. On pose alors $\alpha: i \mapsto \alpha_i$. Cette application est injective par construction des α_i , et donc $\alpha \in S_n$. De plus Φ et int_{α} coïncident sur la famille des τ_i qui engendre S_n . Donc $\Phi = int_{\alpha}$.

Théorème. Pour $n \neq 6$, tout automorphisme de S_n est intérieur

Démonstration. De même que précédemment, on écarte tout de suite le cas n=2 trivial.

Soit Φ un automorphisme. On a une proposition qui nous dit qu'il suffit d'étudier les images des transpositions pour étudier Φ . Soit donc τ une transposition et $\tau' = \Phi(\tau)$. L'idée de la suite est d'étudier les propriétés des centralisateurs de τ et τ' . Avant même de commencer, on a facilement que $c_{\tau} \simeq_{\Phi} c_{\tau'}$.

Étude de c_{τ} :

Si $\tau = (i \ j), \ \sigma \in c_{\tau} \iff \sigma \tau \sigma^{-1} = \tau \iff (i \ j) = (\sigma(i) \ \sigma(j)) \iff \{i; j\} = \sigma(\{i; j\})$. On peut alors construire :

$$r: \begin{pmatrix} c_{\tau} \to S_{n-2} \\ \sigma \mapsto \sigma|_{\{1,\dots,n\}\setminus\{i;j\}} \end{pmatrix}$$

C'est un morphisme par stabilité de $\{i; j\}$ par tout élément de c_{τ} , et il est de plus surjectif car pour atteindre un élément α , il suffit de l'étendre à $\{1, ..., n\}$ tout entier en posant par exemple $\alpha(i) = i$ et $\alpha(j) = j$. On a de plus ker $r = \{id, \tau\}$.

Étude de $c_{\tau'}$:

 τ' est un élément d'ordre deux car τ l'est. On a donc $\tau' = \tau_1 \circ \dots \circ \tau_k$, pour $k \geq 1$ et les τ_i des transpositions à supports disjoints. Naturellement, $\tau_i \in c_{\tau'}$, Donc $N = \langle \tau_i, 1 \leq i \leq k \rangle \leq c_{\tau'}$ et de plus $N \simeq \left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)^k$. Soit $\sigma \in c_{\tau'}$, $\sigma \tau' \sigma^{-1} = \tau'$, autrement dit :

$$(\sigma \tau_1 \sigma^{-1})...(\sigma \tau_k \sigma^{-1}) = \tau_1...\tau_k$$

Par unicité de la décomposition en cycles à support disjoint, on en déduit que conjuguer par un élément de $c_{\tau'}$ permute les τ_i . Ainsi $N \triangleleft c_{\tau'}$.

Bilan:

$$\left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)^k \simeq N \lhd c_{\tau'} \simeq_{\Phi} c_{\tau} \twoheadrightarrow_r S_{n-2}$$

Qui plus est, $\Phi(\ker r) = \{id, \tau'\} \triangleleft N$. On peut donc quotienter l'égalité ci-dessus par $\Phi(\ker r)$ à gauche et $\ker r$ à droite. On obtient alors :

$$\left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)^{k-1} \simeq \frac{N}{\Phi(\ker r)} \lhd \frac{c_{\tau}}{\ker r} \simeq S_{n-2}$$

On a donc construit un sous groupe distingué de S_{n-2} de cardinal 2^{k-1} . Connaissant les sous groupe distingués des S_N , on peut en déduire les seules possibilités :

```
. k=1 et n\geq 3 quelconque (correspond à \{id\} distingué dans S_{n-2})
```

- . n=4 et k=2 (S_2 distingué dans lui-même)
- . n=6 et k=4 (le sous groupe diédral de S_4)

Le dernier cas étant exclu par hypothèse, reste à traiter le deuxième cas. Dans ce cas, τ' est une double transposition, et donc un élément de A_4 . Or Φ^{-1} est aussi un automorphisme, et donc $\Phi^{-1}(A_4) = A_4$ (c'est un sous groupe distingué de même cardinal), et donc $\Phi^{-1}(\Phi(\tau)) = \tau \in A_4$, et c'est absurde. Ainsi, seul le cas 1 est possible, et la proposition précédente s'applique pour donner la conclusion voulue.